# 用于预训练 BERT 的数据集
🏷 sec_bert-dataset
为了预训练 :numref: sec_bert
中实现的 BERT 模型,我们需要以理想的格式生成数据集,以便于两个预训练任务:遮蔽语言模型和下一句预测。一方面,最初的 BERT 模型是在两个庞大的图书语料库和英语维基百科(参见 :numref: subsec_bert_pretraining_tasks
)的合集上预训练的,但它很难吸引这本书的大多数读者。另一方面,现成的预训练 BERT 模型可能不适合医学等特定领域的应用。因此,在定制的数据集上对 BERT 进行预训练变得越来越流行。为了方便 BERT 预训练的演示,我们使用了较小的语料库 WikiText-2 :cite: Merity.Xiong.Bradbury.ea.2016
。
与 :numref: sec_word2vec_data
中用于预训练 word2vec 的 PTB 数据集相比,WikiText-2(1)保留了原来的标点符号,适合于下一句预测;(2)保留了原来的大小写和数字;(3)大了一倍以上。
import os | |
import random | |
import torch | |
from d2l import torch as d2l |
在 WikiText-2 数据集中,每行代表一个段落,其中在任意标点符号及其前面的词元之间插入空格。保留至少有两句话的段落。为了简单起见,我们仅使用句号作为分隔符来拆分句子。我们将更复杂的句子拆分技术的讨论留在本节末尾的练习中。
#@save | |
d2l.DATA_HUB['wikitext-2'] = ( | |
'https://s3.amazonaws.com/research.metamind.io/wikitext/' | |
'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe') | |
#@save | |
def _read_wiki(data_dir): | |
file_name = os.path.join(data_dir, 'wiki.train.tokens') | |
with open(file_name, 'r') as f: | |
lines = f.readlines() | |
# 大写字母转换为小写字母 | |
paragraphs = [line.strip().lower().split(' . ') | |
for line in lines if len(line.split(' . ')) >= 2] | |
random.shuffle(paragraphs) | |
return paragraphs |
# 为预训练任务定义辅助函数
在下文中,我们首先为 BERT 的两个预训练任务实现辅助函数。这些辅助函数将在稍后将原始文本语料库转换为理想格式的数据集时调用,以预训练 BERT。
# 生成下一句预测任务的数据
根据 :numref: subsec_nsp
的描述, _get_next_sentence
函数生成二分类任务的训练样本。
#@save | |
def _get_next_sentence(sentence, next_sentence, paragraphs): | |
if random.random() < 0.5: | |
is_next = True | |
else: | |
# paragraphs 是三重列表的嵌套 | |
next_sentence = random.choice(random.choice(paragraphs)) | |
is_next = False | |
return sentence, next_sentence, is_next |
下面的函数通过调用 _get_next_sentence
函数从输入 paragraph
生成用于下一句预测的训练样本。这里 paragraph
是句子列表,其中每个句子都是词元列表。自变量 max_len
指定预训练期间的 BERT 输入序列的最大长度。
#@save | |
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len): | |
nsp_data_from_paragraph = [] | |
for i in range(len(paragraph) - 1): | |
tokens_a, tokens_b, is_next = _get_next_sentence( | |
paragraph[i], paragraph[i + 1], paragraphs) | |
# 考虑 1 个 '<cls>' 词元和 2 个 '<sep>' 词元 | |
if len(tokens_a) + len(tokens_b) + 3 > max_len: | |
continue | |
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b) | |
nsp_data_from_paragraph.append((tokens, segments, is_next)) | |
return nsp_data_from_paragraph |
# 生成遮蔽语言模型任务的数据
🏷 subsec_prepare_mlm_data
为了从 BERT 输入序列生成遮蔽语言模型的训练样本,我们定义了以下 _replace_mlm_tokens
函数。在其输入中, tokens
是表示 BERT 输入序列的词元的列表, candidate_pred_positions
是不包括特殊词元的 BERT 输入序列的词元索引的列表(特殊词元在遮蔽语言模型任务中不被预测),以及 num_mlm_preds
指示预测的数量(选择 15% 要预测的随机词元)。在 :numref: subsec_mlm
中定义遮蔽语言模型任务之后,在每个预测位置,输入可以由特殊的 “掩码” 词元或随机词元替换,或者保持不变。最后,该函数返回可能替换后的输入词元、发生预测的词元索引和这些预测的标签。
#@save | |
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, | |
vocab): | |
# 为遮蔽语言模型的输入创建新的词元副本,其中输入可能包含替换的 “<mask>” 或随机词元 | |
mlm_input_tokens = [token for token in tokens] | |
pred_positions_and_labels = [] | |
# 打乱后用于在遮蔽语言模型任务中获取 15% 的随机词元进行预测 | |
random.shuffle(candidate_pred_positions) | |
for mlm_pred_position in candidate_pred_positions: | |
if len(pred_positions_and_labels) >= num_mlm_preds: | |
break | |
masked_token = None | |
# 80% 的时间:将词替换为 “<mask>” 词元 | |
if random.random() < 0.8: | |
masked_token = '<mask>' | |
else: | |
# 10% 的时间:保持词不变 | |
if random.random() < 0.5: | |
masked_token = tokens[mlm_pred_position] | |
# 10% 的时间:用随机词替换该词 | |
else: | |
masked_token = random.choice(vocab.idx_to_token) | |
mlm_input_tokens[mlm_pred_position] = masked_token | |
pred_positions_and_labels.append( | |
(mlm_pred_position, tokens[mlm_pred_position])) | |
return mlm_input_tokens, pred_positions_and_labels |
通过调用前述的 _replace_mlm_tokens
函数,以下函数将 BERT 输入序列( tokens
)作为输入,并返回输入词元的索引(在 :numref: subsec_mlm
中描述的可能的词元替换之后)、发生预测的词元索引以及这些预测的标签索引。
#@save | |
def _get_mlm_data_from_tokens(tokens, vocab): | |
candidate_pred_positions = [] | |
# tokens 是一个字符串列表 | |
for i, token in enumerate(tokens): | |
# 在遮蔽语言模型任务中不会预测特殊词元 | |
if token in ['<cls>', '<sep>']: | |
continue | |
candidate_pred_positions.append(i) | |
# 遮蔽语言模型任务中预测 15% 的随机词元 | |
num_mlm_preds = max(1, round(len(tokens) * 0.15)) | |
mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens( | |
tokens, candidate_pred_positions, num_mlm_preds, vocab) | |
pred_positions_and_labels = sorted(pred_positions_and_labels, | |
key=lambda x: x[0]) | |
pred_positions = [v[0] for v in pred_positions_and_labels] | |
mlm_pred_labels = [v[1] for v in pred_positions_and_labels] | |
return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels] |
# 将文本转换为预训练数据集
现在我们几乎准备好为 BERT 预训练定制一个 Dataset
类。在此之前,我们仍然需要定义辅助函数 _pad_bert_inputs
来将特殊的 “<mask>” 词元附加到输入。它的参数 examples
包含来自两个预训练任务的辅助函数 _get_nsp_data_from_paragraph
和 _get_mlm_data_from_tokens
的输出。
#@save | |
def _pad_bert_inputs(examples, max_len, vocab): | |
max_num_mlm_preds = round(max_len * 0.15) | |
all_token_ids, all_segments, valid_lens, = [], [], [] | |
all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], [] | |
nsp_labels = [] | |
for (token_ids, pred_positions, mlm_pred_label_ids, segments, | |
is_next) in examples: | |
all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * ( | |
max_len - len(token_ids)), dtype=torch.long)) | |
all_segments.append(torch.tensor(segments + [0] * ( | |
max_len - len(segments)), dtype=torch.long)) | |
# valid_lens 不包括 '<pad>' 的计数 | |
valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32)) | |
all_pred_positions.append(torch.tensor(pred_positions + [0] * ( | |
max_num_mlm_preds - len(pred_positions)), dtype=torch.long)) | |
# 填充词元的预测将通过乘以 0 权重在损失中过滤掉 | |
all_mlm_weights.append( | |
torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * ( | |
max_num_mlm_preds - len(pred_positions)), | |
dtype=torch.float32)) | |
all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * ( | |
max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long)) | |
nsp_labels.append(torch.tensor(is_next, dtype=torch.long)) | |
return (all_token_ids, all_segments, valid_lens, all_pred_positions, | |
all_mlm_weights, all_mlm_labels, nsp_labels) |
将用于生成两个预训练任务的训练样本的辅助函数和用于填充输入的辅助函数放在一起,我们定义以下 _WikiTextDataset
类为用于预训练 BERT 的 WikiText-2 数据集。通过实现 __getitem__
函数,我们可以任意访问 WikiText-2 语料库的一对句子生成的预训练样本(遮蔽语言模型和下一句预测)样本。
最初的 BERT 模型使用词表大小为 30000 的 WordPiece 嵌入 :cite: Wu.Schuster.Chen.ea.2016
。WordPiece 的词元化方法是对 :numref: subsec_Byte_Pair_Encoding
中原有的字节对编码算法稍作修改。为简单起见,我们使用 d2l.tokenize
函数进行词元化。出现次数少于 5 次的不频繁词元将被过滤掉。
#@save | |
class _WikiTextDataset(torch.utils.data.Dataset): | |
def __init__(self, paragraphs, max_len): | |
# 输入 paragraphs [i] 是代表段落的句子字符串列表; | |
# 而输出 paragraphs [i] 是代表段落的句子列表,其中每个句子都是词元列表 | |
paragraphs = [d2l.tokenize( | |
paragraph, token='word') for paragraph in paragraphs] | |
sentences = [sentence for paragraph in paragraphs | |
for sentence in paragraph] | |
self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[ | |
'<pad>', '<mask>', '<cls>', '<sep>']) | |
# 获取下一句子预测任务的数据 | |
examples = [] | |
for paragraph in paragraphs: | |
examples.extend(_get_nsp_data_from_paragraph( | |
paragraph, paragraphs, self.vocab, max_len)) | |
# 获取遮蔽语言模型任务的数据 | |
examples = [(_get_mlm_data_from_tokens(tokens, self.vocab) | |
+ (segments, is_next)) | |
for tokens, segments, is_next in examples] | |
# 填充输入 | |
(self.all_token_ids, self.all_segments, self.valid_lens, | |
self.all_pred_positions, self.all_mlm_weights, | |
self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs( | |
examples, max_len, self.vocab) | |
def __getitem__(self, idx): | |
return (self.all_token_ids[idx], self.all_segments[idx], | |
self.valid_lens[idx], self.all_pred_positions[idx], | |
self.all_mlm_weights[idx], self.all_mlm_labels[idx], | |
self.nsp_labels[idx]) | |
def __len__(self): | |
return len(self.all_token_ids) |
通过使用 _read_wiki
函数和 _WikiTextDataset
类,我们定义了下面的 load_data_wiki
来下载并生成 WikiText-2 数据集,并从中生成预训练样本。
#@save | |
def load_data_wiki(batch_size, max_len): | |
"""加载WikiText-2数据集""" | |
num_workers = d2l.get_dataloader_workers() | |
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2') | |
paragraphs = _read_wiki(data_dir) | |
train_set = _WikiTextDataset(paragraphs, max_len) | |
train_iter = torch.utils.data.DataLoader(train_set, batch_size, | |
shuffle=True, num_workers=num_workers) | |
return train_iter, train_set.vocab |
将批量大小设置为 512,将 BERT 输入序列的最大长度设置为 64,我们打印出小批量的 BERT 预训练样本的形状。注意,在每个 BERT 输入序列中,为遮蔽语言模型任务预测()个位置。
batch_size, max_len = 512, 64 | |
train_iter, vocab = load_data_wiki(batch_size, max_len) | |
for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X, | |
mlm_Y, nsp_y) in train_iter: | |
print(tokens_X.shape, segments_X.shape, valid_lens_x.shape, | |
pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape, | |
nsp_y.shape) | |
break |
torch.Size([512, 64]) torch.Size([512, 64]) torch.Size([512]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512])
最后,我们来看一下词量。即使在过滤掉不频繁的词元之后,它仍然比 PTB 数据集的大两倍以上。
len(vocab) |
20256
# 小结
- 与 PTB 数据集相比,WikiText-2 数据集保留了原来的标点符号、大小写和数字,并且比 PTB 数据集大了两倍多。
- 我们可以任意访问从 WikiText-2 语料库中的一对句子生成的预训练(遮蔽语言模型和下一句预测)样本。
# 练习
- 为简单起见,句号用作拆分句子的唯一分隔符。尝试其他的句子拆分技术,比如 Spacy 和 NLTK。以 NLTK 为例,需要先安装 NLTK:
pip install nltk
。在代码中先import nltk
。然后下载 Punkt 语句词元分析器:nltk.download('punkt')
。要拆分句子,比如sentences = 'This is great ! Why not ?'
,调用nltk.tokenize.sent_tokenize(sentences)
将返回两个句子字符串的列表:['This is great !', 'Why not ?']
。 - 如果我们不过滤出一些不常见的词元,词量会有多大?
Discussions