# 全卷积网络
🏷 sec_fcn
如 :numref: sec_semantic_segmentation
中所介绍的那样,语义分割是对图像中的每个像素分类。
全卷积网络(fully convolutional network,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换 :cite: Long.Shelhamer.Darrell.2015
。
与我们之前在图像分类或目标检测部分介绍的卷积神经网络不同,全卷积网络将中间层特征图的高和宽变换回输入图像的尺寸:这是通过在 :numref: sec_transposed_conv
中引入的转置卷积(transposed convolution)实现的。
因此,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。
%matplotlib inline | |
import torch | |
import torchvision | |
from torch import nn | |
from torch.nn import functional as F | |
from d2l import torch as d2l |
# 构造模型
下面我们了解一下全卷积网络模型最基本的设计。
如 :numref: fig_fcn
所示,全卷积网络先使用卷积神经网络抽取图像特征,然后通过 卷积层将通道数变换为类别个数,最后在 :numref: sec_transposed_conv
中通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。
因此,模型输出与输入图像的高和宽相同,且最终输出通道包含了该空间位置像素的类别预测。
🏷 fig_fcn
下面,我们 [使用在 ImageNet 数据集上预训练的 ResNet-18 模型来提取图像特征],并将该网络记为 pretrained_net
。
ResNet-18 模型的最后几层包括全局平均汇聚层和全连接层,然而全卷积网络中不需要它们。
pretrained_net = torchvision.models.resnet18(pretrained=True) | |
list(pretrained_net.children())[-3:] |
/home/d2l-worker/miniconda3/envs/d2l-zh-release-1/lib/python3.9/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.
warnings.warn(
/home/d2l-worker/miniconda3/envs/d2l-zh-release-1/lib/python3.9/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
[Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
),
AdaptiveAvgPool2d(output_size=(1, 1)),
Linear(in_features=512, out_features=1000, bias=True)]
接下来,我们 [创建一个全卷积网络 net
]。
它复制了 ResNet-18 中大部分的预训练层,除了最后的全局平均汇聚层和最接近输出的全连接层。
net = nn.Sequential(*list(pretrained_net.children())[:-2]) |
给定高度为 320 和宽度为 480 的输入, net
的前向传播将输入的高和宽减小至原来的,即 10 和 15。
X = torch.rand(size=(1, 3, 320, 480)) | |
net(X).shape |
torch.Size([1, 512, 10, 15])
接下来 [使用 卷积层将输出通道数转换为 Pascal VOC2012 数据集的类数(21 类)。]
最后需要 (将特征图的高度和宽度增加 32 倍),从而将其变回输入图像的高和宽。
回想一下 :numref: sec_padding
中卷积层输出形状的计算方法:
由于 且,我们构造一个步幅为 的转置卷积层,并将卷积核的高和宽设为,填充为。
我们可以看到如果步幅为,填充为(假设 是整数)且卷积核的高和宽为,转置卷积核会将输入的高和宽分别放大 倍。
num_classes = 21 | |
net.add_module('final_conv', nn.Conv2d(512, num_classes, kernel_size=1)) | |
net.add_module('transpose_conv', nn.ConvTranspose2d(num_classes, num_classes, | |
kernel_size=64, padding=16, stride=32)) |
# [初始化转置卷积层]
在图像处理中,我们有时需要将图像放大,即上采样(upsampling)。
双线性插值(bilinear interpolation)
是常用的上采样方法之一,它也经常用于初始化转置卷积层。
为了解释双线性插值,假设给定输入图像,我们想要计算上采样输出图像上的每个像素。
- 将输出图像的坐标 映射到输入图像的坐标 上。
例如,根据输入与输出的尺寸之比来映射。
请注意,映射后的和是实数。 - 在输入图像上找到离坐标 最近的 4 个像素。
- 输出图像在坐标 上的像素依据输入图像上这 4 个像素及其与 的相对距离来计算。
双线性插值的上采样可以通过转置卷积层实现,内核由以下 bilinear_kernel
函数构造。
限于篇幅,我们只给出 bilinear_kernel
函数的实现,不讨论算法的原理。
def bilinear_kernel(in_channels, out_channels, kernel_size): | |
factor = (kernel_size + 1) // 2 | |
if kernel_size % 2 == 1: | |
center = factor - 1 | |
else: | |
center = factor - 0.5 | |
og = (torch.arange(kernel_size).reshape(-1, 1), | |
torch.arange(kernel_size).reshape(1, -1)) | |
filt = (1 - torch.abs(og[0] - center) / factor) * \ | |
(1 - torch.abs(og[1] - center) / factor) | |
weight = torch.zeros((in_channels, out_channels, | |
kernel_size, kernel_size)) | |
weight[range(in_channels), range(out_channels), :, :] = filt | |
return weight |
让我们用 [双线性插值的上采样实验] 它由转置卷积层实现。
我们构造一个将输入的高和宽放大 2 倍的转置卷积层,并将其卷积核用 bilinear_kernel
函数初始化。
conv_trans = nn.ConvTranspose2d(3, 3, kernel_size=4, padding=1, stride=2, | |
bias=False) | |
conv_trans.weight.data.copy_(bilinear_kernel(3, 3, 4)); |
读取图像 X
,将上采样的结果记作 Y
。为了打印图像,我们需要调整通道维的位置。
img = torchvision.transforms.ToTensor()(d2l.Image.open('./images/catdog.jpg')) | |
X = img.unsqueeze(0) | |
Y = conv_trans(X) | |
out_img = Y[0].permute(1, 2, 0).detach() |
可以看到,转置卷积层将图像的高和宽分别放大了 2 倍。
除了坐标刻度不同,双线性插值放大的图像和在 :numref: sec_bbox
中打印出的原图看上去没什么两样。
d2l.set_figsize() | |
print('input image shape:', img.permute(1, 2, 0).shape) | |
d2l.plt.imshow(img.permute(1, 2, 0)); | |
print('output image shape:', out_img.shape) | |
d2l.plt.imshow(out_img); |
input image shape: torch.Size([561, 728, 3])
output image shape: torch.Size([1122, 1456, 3])
全卷积网络 [用双线性插值的上采样初始化转置卷积层。对于 卷积层,我们使用 Xavier 初始化参数。]
W = bilinear_kernel(num_classes, num_classes, 64) | |
net.transpose_conv.weight.data.copy_(W); |
# [读取数据集]
我们用 :numref: sec_semantic_segmentation
中介绍的语义分割读取数据集。
指定随机裁剪的输出图像的形状为:高和宽都可以被 整除。
batch_size, crop_size = 32, (320, 480) | |
train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size) |
read 1114 examples
read 1078 examples
# [训练]
现在我们可以训练全卷积网络了。
这里的损失函数和准确率计算与图像分类中的并没有本质上的不同,因为我们使用转置卷积层的通道来预测像素的类别,所以需要在损失计算中指定通道维。
此外,模型基于每个像素的预测类别是否正确来计算准确率。
def loss(inputs, targets): | |
return F.cross_entropy(inputs, targets, reduction='none').mean(1).mean(1) | |
num_epochs, lr, wd, devices = 5, 0.001, 1e-3, d2l.try_all_gpus() | |
trainer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=wd) | |
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices) |
loss 0.443, train acc 0.863, test acc 0.852
265.6 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]
# [预测]
在预测时,我们需要将输入图像在各个通道做标准化,并转成卷积神经网络所需要的四维输入格式。
def predict(img): | |
X = test_iter.dataset.normalize_image(img).unsqueeze(0) | |
pred = net(X.to(devices[0])).argmax(dim=1) | |
return pred.reshape(pred.shape[1], pred.shape[2]) |
为了 [可视化预测的类别] 给每个像素,我们将预测类别映射回它们在数据集中的标注颜色。
def label2image(pred): | |
colormap = torch.tensor(d2l.VOC_COLORMAP, device=devices[0]) | |
X = pred.long() | |
return colormap[X, :] |
测试数据集中的图像大小和形状各异。
由于模型使用了步幅为 32 的转置卷积层,因此当输入图像的高或宽无法被 32 整除时,转置卷积层输出的高或宽会与输入图像的尺寸有偏差。
为了解决这个问题,我们可以在图像中截取多块高和宽为 32 的整数倍的矩形区域,并分别对这些区域中的像素做前向传播。
请注意,这些区域的并集需要完整覆盖输入图像。
当一个像素被多个区域所覆盖时,它在不同区域前向传播中转置卷积层输出的平均值可以作为 softmax
运算的输入,从而预测类别。
为简单起见,我们只读取几张较大的测试图像,并从图像的左上角开始截取形状为 的区域用于预测。
对于这些测试图像,我们逐一打印它们截取的区域,再打印预测结果,最后打印标注的类别。
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012') | |
test_images, test_labels = d2l.read_voc_images(voc_dir, False) | |
n, imgs = 4, [] | |
for i in range(n): | |
crop_rect = (0, 0, 320, 480) | |
X = torchvision.transforms.functional.crop(test_images[i], *crop_rect) | |
pred = label2image(predict(X)) | |
imgs += [X.permute(1,2,0), pred.cpu(), | |
torchvision.transforms.functional.crop( | |
test_labels[i], *crop_rect).permute(1,2,0)] | |
d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2); |
# 小结
- 全卷积网络先使用卷积神经网络抽取图像特征,然后通过 卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。
- 在全卷积网络中,我们可以将转置卷积层初始化为双线性插值的上采样。
# 练习
- 如果将转置卷积层改用 Xavier 随机初始化,结果有什么变化?
- 调节超参数,能进一步提升模型的精度吗?
- 预测测试图像中所有像素的类别。
- 最初的全卷积网络的论文中 :cite:
Long.Shelhamer.Darrell.2015
还使用了某些卷积神经网络中间层的输出。试着实现这个想法。
Discussions